

CONTENTS

Section 1	EXPONENTS AND ROOTS	3
Section 2	COMPARING RATIONAL AND IRRATIONAL NUMBERS	9
Section 3	SIMPLIFYING RADICAL EXPRESSIONS	13
Section 4	SOLVING EQUATIONS WITH RADICALS	19
Section 5	MULTIPLICATION WITH RADICALS	25
Section 6	ADDITION AND SUBTRACTION WITH RADICALS	29
Section 7	THE DISTRIBUTIVE PROPERTY WITH RADICALS	34
Section 8	SIMPLIFYING RADICALS WITH FRACTIONS	38
Section 9	HOW TO RATIONALIZE A DENOMINATOR	41
Section 10	THE PYTHAGOREAN THEOREM	47
Section 11	REVIEW OF RADICAL EXPRESSIONS	54
Section 12	CUMULATIVE REVIEW	56
Section 13	ANSWER KEY	60
	HOMEWORK & EXTRA PRACTICE SCENARIOS	65

In this book, you will learn about radical expressions like the square root of 49, or $\sqrt{49}$. To understand square roots, you need to be familiar with exponents, which represent repeated multiplication. Let's go back to that topic to prepare your mind to learn about radical expressions.

- 1. Simplify the following expressions by raising each base to an exponent.
 - a. 7^2 b. 5^3 c. 4^4 d. 2^5

- 2. When you learn about radical expressions, you learn how to think about exponents (or repeated multiplication) in reverse. Consider the following questions.
 - a. What number when squared (raised to the 2nd power) is equal to 49?
 - b. What number when cubed (raised to the 3rd power) is equal to 125?
 - c. What number when raised to the 4th power is equal to 256?
 - d. What number when raised to the 5th power is equal to 32?

The calculations you did in scenario 1 should have made it easy to answer the questions in scenario 2. In fact, the calculations in scenario 1 *must* be done in order to answer the questions in scenario 2.

- 3. At this point, we need to define some vocabulary.
 - a. Since 7² (or 7 squared) is 49, 7 is called the ______ of 49.
 - b. Since 5³ (or 5 cubed) is 125, 5 is called the ______ of 125.
 - c. Since 4⁴ (or 4 to the fourth power) is 256, 4 is called the ______ of 256.
 - d. Since 2⁵ (or 2 to the fifth power) is 32, 2 is called the ______ of 32.
 - e. If $A^n = B$, then A is the _____ of B.

4. In mathematics, when there are many ways to show a concept, the most concise form will likely be used more often. In the table below, there are 3 equivalent (equal) forms of the same statement.

The 2nd Form is how you can interpret the question stated in the 1st Form.

The 3rd Form is the more concise version of the 1st Form.

1st Form	2nd Form	<u>3rd Form</u>
What is the square root of 49?	What number when squared is 49?	Simplify $\sqrt{49}$.
What is the cube root of 125?	What number when cubed is?	Simplify ∛
What is the fourth root of 256?	What number raised to the 4th power is?	Simplify ∜
What is the fifth root of 32?	What number raised to the 5th power is?	Simplify ₅√
What is the <i>n</i> th root of <i>B</i> ?	What number raised to the <i>n</i> th power is?	Simplify n√

5. Rewrite the following statements in a more concise form (the 3rd Form).

- a. What is the square root of 81? b. What is the cube root of 64?
- c. What is the fourth root of 81? d. What is the fifth root of 1?

6. Simplify the following expressions by raising each base to its specified exponent.

a. 2^3 b. 3^3 c. 4^3 d. 5^3

7. Use your work in the previous scenario to simplify the following expressions.

- a. $\sqrt[3]{8}$ b. $\sqrt[3]{27}$ c. $\sqrt[3]{64}$ d. $\sqrt[3]{125}$
- 8. Simplify the following expressions by raising each base to its specified exponent.
 - a. 2^4 b. 3^4 c. 4^4 d. 5^4
- 9. Use your work in the previous scenario to simplify the following expressions.
 - a. $\sqrt[4]{16}$ b. $\sqrt[4]{81}$ c. $\sqrt[4]{256}$ d. $\sqrt[4]{625}$

Section 3 SIMPLIFYING RADICAL EXPRESSIONS

The next scenarios use your familiarity with rational square roots to help you learn how to simplify square roots that are irrational.

31. Simplify each product as much as possible. Analyze the results as you work through each column.

a.
$$\sqrt{4\cdot9}$$
c. $\sqrt{25\cdot4}$ e. $\sqrt{16\cdot25}$ g. $\sqrt{16\cdot9}$ b. $\sqrt{4}\cdot\sqrt{9}$ d. $\sqrt{25}\cdot\sqrt{4}$ f. $\sqrt{16}\cdot\sqrt{25}$ h. $\sqrt{16}\cdot\sqrt{9}$

32. Simplify each product as much as possible. Analyze the results as you work through each column.

a.
$$\sqrt{16\cdot4}$$
c. $\sqrt{100\cdot49}$ e. $\sqrt{36\cdot64}$ g. $\sqrt{81\cdot25}$ b. $\sqrt{16}\cdot\sqrt{4}$ d. $\sqrt{100}\cdot\sqrt{49}$ f. $\sqrt{36}\cdot\sqrt{64}$ h. $\sqrt{81}\cdot\sqrt{25}$

33. Your work in the previous scenario should suggest the following properties:

.

a.
$$\sqrt{A \cdot B}$$
 is equivalent to ... b. $\sqrt{X} \cdot \sqrt{Y}$ is equivalent to

- 34. Now consider a product such as $\sqrt{25} \cdot \sqrt{3}$. You can simplify $\sqrt{25}$ as 5, but you cannot rewrite $\sqrt{3}$. As a result, the most simplified form of $\sqrt{25} \cdot \sqrt{3}$ is .
- 35. What is the most simplified form of $\sqrt{4} \cdot \sqrt{5}$?

Section 6 **ADDITION AND SUBTRACTION WITH RADICALS**

83. Simplify each sum or difference as much as possible.

a.
$$\sqrt{1+4}$$
c. $\sqrt{9-1}$ e. $\sqrt{4+12}$ b. $\sqrt{1}+\sqrt{4}$ d. $\sqrt{9}-\sqrt{1}$ f. $\sqrt{4}+\sqrt{12}$

84. Is the expression $\sqrt{1} + \sqrt{1}$ equal to the expression $\sqrt{1+1}$?

85. Simplify each sum or difference as much as possible.

a.
$$\sqrt{9+16}$$
c. $\sqrt{100-25}$ e. $\sqrt{100-64}$ b. $\sqrt{9}+\sqrt{16}$ d. $\sqrt{100}-\sqrt{25}$ f. $\sqrt{100}-\sqrt{64}$

86. Determine if the following properties exist.

a.
$$\sqrt{A} + \sqrt{B} = \sqrt{A+B}$$
 b. $\sqrt{A} - \sqrt{B} = \sqrt{A-B}$

87. At this point you have seen that $\sqrt{2} \cdot \sqrt{3}$ is equivalent to $\sqrt{2 \cdot 3}$, but your work above reveals that $\sqrt{2} + \sqrt{3}$ does not equal $\sqrt{2+3}$. In mathematics, there are many instances where terms can be multiplied together, but they cannot also be added together.

a. For example, 3x+2x is 5x, but 3x+2y cannot be combined. What is the simplified form of $3x \cdot 2y$?

b. The expression y+3y+7y can be simplified, but 4M+2N cannot be combined. What is the simplified form of $4M \cdot 2N$?

c. The expression $xy^4 + 3xy^4 + 5xy^4$ can be simplified, but $5xy^2 + 6x^2y$ cannot. What is the simplified form of $5xy^2 \cdot 6x^2y$?

88. Explain why each statement below is false.

a.
$$\sqrt{4} + \sqrt{4} = \sqrt{8}$$
 b. $\sqrt{4} + \sqrt{9} = \sqrt{13}$ c. $\sqrt{36} - \sqrt{25} = \sqrt{11}$

- 89. Simplify each expression as much as you can.
 - a. 2 eggs plus 3 eggs b. 2x+3x c. $2x^2+3x^2$ d. $2\sqrt{2}+3\sqrt{2}$

90. Simplify each expression as much as you can.

- a. $1\sqrt{2} + 1\sqrt{2}$ b. $\sqrt{3} + \sqrt{3}$ c. $\sqrt{5} + 2\sqrt{5}$
- 91. Simplify each expression as much as you can.

a.
$$6\sqrt{2} - 4\sqrt{2}$$
 b. $10\sqrt{3} - 7\sqrt{3}$ c. $2\sqrt{5} - 6\sqrt{5}$

- 92. What is the simplified form of $\sqrt{5} + \sqrt{6}$?
- 93. Explain how you can determine if two radical expressions are like terms.
- 94. The expressions $\sqrt{20}$ and $\sqrt{45}$ cannot be combined in their current forms. However, if you simplify each radical expression as much as possible, it becomes clear that they can be combined. In a different form, the numbers become like terms. What is the simplified form of $\sqrt{20} + \sqrt{45}$?

1.	a. 49 b. 125 c. 256 d. 32
2.	a. 7 b. 5 c. 4 d. 2
3.	a. square root b. cube root c. 4th root d. 5th root e. <i>n</i> th root
4.	Row 1: no blanks need to be filled Row 2: fill in both blanks with 125 Row 3: fill in both blanks with 256 Row 4: fill in both blanks with 32 Row 5: fill in both blanks with <i>B</i>
5.	a. √81 b. ∛64 c. ∜81 d. ∜1
6.	a. 8 b. 27 c. 64 d. 125
7.	a. 2 b. 3 c. 4 d. 5
8.	a. 16 b. 81 c. 256 d. 625
9.	a. 2 b. 3 c. 4 d. 5
10.	a. 9 b. 4 c. 3 d. 1
11.	a. 3 b. 2 c. 1 d. 0
12.	a. 4 b2 c4 d. not possible
13.	You can check that your square root is accurate by squaring your result. Based on what you have learned so far, it is not possible for a number to be negative <u>after</u> it has been squared.
14.	a. $\frac{4}{9}$ b. $\frac{8}{27}$ c. $\frac{4}{9}$ d. $-\frac{8}{27}$
15.	a. $\frac{4}{9}$ b. $\frac{8}{27}$ c. $\frac{4}{9}$ d. $-\frac{8}{27}$ a. $-\frac{3}{5} \cdot -\frac{3}{5} \cdot -\frac{3}{5} \rightarrow -\frac{27}{125}$ b. $\frac{x^8}{10,000}$ c. $\frac{36x^2}{121}$ d. $-\frac{32}{x^5y^{15}}$
16.	$-\frac{2}{3}$
17.	a. $\frac{2}{3}$ b. $-\frac{1}{2}$ c. $-\frac{4}{5}$ d. not possible
18.	You can check that your square root is accurate by squaring your result. Based on what you have learned so far, it is not possible for a number to be negative <u>after</u> it has been squared.
19.	$\sqrt{10}$; cannot simplify this more

21.	a. $\frac{4}{20} \rightarrow \frac{1}{5}$ b. $\frac{6}{42} \rightarrow \frac{1}{7}$ c. $\frac{8}{72} \rightarrow \frac{1}{9}$
22.	a. ≈6.1 b. ≈7.7 c. ≈9.9
23.	a. 6.083 b. 7.746 c. 9.899
24.	No
25.	Yes. For example, $7 = \frac{7}{1}$.
26.	a. $\frac{1}{2}$ b. $\frac{1}{4}$ c. $\frac{1}{5}$ d. $\frac{3}{4}$ a. $\frac{1}{3}$ b. $\frac{1}{9}$ c. $\frac{2}{3}$ d. $\frac{5}{9}$
27.	a. $\frac{1}{2}$ b. $\frac{1}{4}$ c. $\frac{1}{5}$ d. $\frac{3}{4}$ a. $\frac{1}{3}$ b. $\frac{1}{9}$ c. $\frac{2}{3}$ d. $\frac{5}{9}$
28.	a. 3.14 \rightarrow 3.1415926 b. Calculators will vary \rightarrow 6.08276253
29.	Circle $\sqrt{3}$, $\sqrt{8}$, and $\sqrt{15}$.
30.	90
31.	a. 6 c. 10 e. 20 g. 12 b. 6 d. 10 f. 20 h. 12
32.	a. 8 c. 70 e. 48 g. 45 b. 8 d. 70 f. 48 h. 45
33.	a. $\sqrt{A} \cdot \sqrt{B}$ b. $\sqrt{X \cdot Y}$
34.	<u> </u>
35.	2√5
36.	a. five root three b. seven root six c. four root ten
37.	a. $2\sqrt{3}$ b. $3\sqrt{2}$ c. $5\sqrt{2}$ d. $\sqrt{10}$
38.	a. 3√3 b. 3 c. two
39.	a. $3\sqrt{2}$ b. $\sqrt{16}\sqrt{3} \rightarrow 4\sqrt{3}$ c. $\sqrt{4}\sqrt{5} \rightarrow 2\sqrt{5}$ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
40.	1, 4, 9, 16, 25, 36, 49, 64, 81, 100
41.	a. 16 b. 9 c. 100 d. 64
42.	a. 4 and 16b. 4 and 16c. 4, 9 and 36d. 4, 9, 16, 36 and 144
43.	a. $\sqrt{4}\sqrt{5} \rightarrow 2\sqrt{5}$ b. $\sqrt{4}\sqrt{6} \rightarrow 2\sqrt{6}$ c. $\sqrt{4}\sqrt{7} \rightarrow 2\sqrt{7}$
44.	a. $\sqrt{9}\sqrt{5} \rightarrow 3\sqrt{5}$ b. $\sqrt{9}\sqrt{6} \rightarrow 3\sqrt{6}$

c. $\sqrt{9}\sqrt{7} \rightarrow 3\sqrt{7}$ a. $\sqrt{25}\sqrt{2} \rightarrow 5\sqrt{2}$ b. $\sqrt{25}\sqrt{3} \rightarrow 5\sqrt{3}$ 45. c. √22 $\sqrt{49}\sqrt{2} \rightarrow 7\sqrt{2}$ b. $\sqrt{4}\sqrt{10} \rightarrow 2\sqrt{10}$ 46. а. b. $\sqrt{4\sqrt{26}} \rightarrow 2\sqrt{26}$ a. $\sqrt{81}\sqrt{2} \rightarrow 9\sqrt{2}$ 47. 8 48. 99 49. a. $2 \cdot 2\sqrt{2} \rightarrow 4\sqrt{2}$ b. $3 \cdot 2\sqrt{3} \rightarrow 6\sqrt{3}$ 50. a. $7 \cdot \sqrt{16}\sqrt{2} \rightarrow 7 \cdot 4\sqrt{2} \rightarrow 28\sqrt{2}$ 51. c. 2√14 b. 5·3=15 b. 25 c. 8 52. a. 1 53. H^2 54. I^2 a. subtracting 3.1 b. multiplying by 3 c. squaring an expression (raising an 55. expression to the second power) Raise 10 to the 2nd power (compute 10^2) 56. $z - 2 = P^2$ and $z = P^2 + 2$ 57. a. 17 c. 2 58. b. 0 59. no solution a. 101 c. 8 d. 24 60. b. 6 a. 27 b. -3 c. no solution 61. a. $(x+2)(x+2) \rightarrow x^2 + 4x + 4$ b. $(x-1)(x-1) \rightarrow x^2 - 2x + 1$ 62. c. $x^2 + 10x + 25$ d. $9x^2 - 42x + 49$ a. $(x+3)(x+2) = 0 \rightarrow x = -3 \text{ or } -2$ b. $(x-6)(x+3)=0 \rightarrow x=6, -3$ 63. c. $(2x+3)(x-2)=0 \rightarrow x=-1.5, 2$ a. $0 = x^2 - 10x + 16 \rightarrow 0 = (x - 8)(x - 2)$ \rightarrow x = 8 (x = 8 or 2, but x = 2 makes the original equation false) 64. b. $0 = x^2 + 9x + 8 \rightarrow 0 = (x+8)(x+1)$ $\rightarrow x = -1$ (x = -8 or -1, but x = -8 makes the original equation false) a. $(\sqrt{x+3})^2 = (x+1)^2 \rightarrow x+3 = x^2+2x+1$ $\rightarrow 0 = x^2 + x - 2 \rightarrow 0 = (x+2)(x-1)$ 65. x = -2 or 1b. x = 4 or 3a. 1 is a solution, but -2 is **not** because it makes the original equation false 66. b. 4 and 3 are both solutions x = -1 (x = -9 or -1, but -9 makes the 67.

JULN	
	original equation false)
	a. $x = 8$ ($x = 3$ or 8, but $x = 3$ makes the
68.	original equation false)
	b. no solution (x = -1 , but that value
	makes the original equation false)
69.	no solution ($x = 1$ or 4, but both make the
	original equation false)
70.	N is 36
	a. $\sqrt{12} \rightarrow 2\sqrt{3}$ b. 5 c. 10
71.	d. $2\sqrt{2} \cdot \sqrt{14} \rightarrow 2\sqrt{28} \rightarrow 2 \cdot 2\sqrt{7} \rightarrow 4\sqrt{7}$
	d. $2\sqrt{2} \cdot \sqrt{14} \rightarrow 2\sqrt{28} \rightarrow 2 \cdot 2\sqrt{7} \rightarrow 4\sqrt{7}$
72.	a. 24 b. 6x c. $6\sqrt{2}$ d. $2A\sqrt{B}$
73.	a. $20\sqrt{3}$ b. 12 c. $6\sqrt{8} \rightarrow 12\sqrt{2}$
74.	a. $4 \cdot 3\sqrt{3} \rightarrow 12\sqrt{3}$ b. $2\sqrt{16} \rightarrow 8$
75.	a. 48 b. 15xy c. 15√6
76.	a. $44\sqrt{14}$ b. $AC\sqrt{BD}$ c. $4\sqrt{4} \rightarrow 8$
77.	a. $40\sqrt{2}$ b. $-30\sqrt{3}$ c. -36 d. 63
78.	$\sqrt{18} = 3\sqrt{2} \rightarrow 3(1.41) = 4.23$
79.	$\sqrt{75} = 5\sqrt{3} \rightarrow 5(1.73) = 8.65$
80.	a. x=7 b. x=23 c. x=-1
81.	G = 24; H = 48
82.	a. $3\sqrt{2}$, $\sqrt{19}$, $2\sqrt{5}$ $(\sqrt{18}$, $\sqrt{19}$, $\sqrt{20})$ b. $3\sqrt{10}$, $7\sqrt{2}$, $6\sqrt{3}$, $4\sqrt{7}$ $(\sqrt{90}$, $\sqrt{98}$, $\sqrt{108}$, $\sqrt{112})$
	a. √5 c. 2√2 e. 4
83.	_
	b. 3 d. 2 f. 2+2√3
84.	No. 2≠√2
85.	a.5 c.5√3 e.6
	b. 7 d. 5 f. 2
86.	a. No b. No
87.	a. 6xy b. 8MN c. $30x^3y^3$
	a. $\sqrt{4} = 2$. Thus, $\sqrt{4} + \sqrt{4} = 4$.
0.0	b. $\sqrt{4} = 2; \sqrt{9} = 3$. Thus, $\sqrt{4} + \sqrt{9} = 5$.
88.	
í	c. $\sqrt{36} = 6$; $\sqrt{25} = 5$. Thus, $\sqrt{36} - \sqrt{25} = 1$.
89.	a. 5 eggs b. 5x c. $5x^2$ d. $5\sqrt{2}$
89. 90.	_

summitmathbooks.com